白嫩少妇喷水正在播放,国内精品久久久久影院中文字幕,国产成人免费A在线视频,夜夜影院未满十八勿进

歡迎光臨金湖凱銘儀表有限公司!本公司主營(yíng):渦輪流量計,電磁流量計,渦街流量計,孔板流量計,金屬管浮子流量計,磁翻板液位計等儀器儀表,聯(lián)系熱線(xiàn):15195518515

金湖凱銘儀表有限公司LOGO

金湖凱銘儀表有限公司

品質(zhì)保證,服務(wù)周到,儀器儀表供應商

--24小時(shí)服務(wù)熱線(xiàn)--15195518515
當前位置:*頁(yè)>>新聞資訊>>利用數值仿真技術(shù)對渦輪流量計內部流場(chǎng)研究

利用數值仿真技術(shù)對渦輪流量計內部流場(chǎng)研究

發(fā)布時(shí)間:2020-11-26 08:00:31??點(diǎn)擊次數:2033次
摘要:利用數值仿真技術(shù)對渦輪流量計內部流場(chǎng)進(jìn)行了研究,目的是為優(yōu)化渦輪流量計的結構設計提供指導。利用葉輪轉速與平均力矩系數存在線(xiàn)性關(guān)系,提出兩點(diǎn)法確定葉輪在力矩達到平衡狀態(tài)下的轉速。數值分析結果表明,前導流件葉片后形成的尾流影響葉輪入口的流體速度分布,繼而影響葉輪的旋轉穩定性;葉輪葉片壓力面上靠近葉片前緣以及吸力面上靠近尾緣處存在壓力突變區,易產(chǎn)生脫流現象;葉輪輪轂前后間隙區內流體受葉輪旋轉影響而易產(chǎn)生漩渦流和明顯的切向速度分量。
輪流量計是一種速度式流量計,利用葉輪的旋轉速度來(lái)推導被測流體的流量大小,使得其內部流場(chǎng)分布對葉輪的旋轉特性具有重要的影響。因此,利用數值模擬手段對渦輪流量計內部流場(chǎng)分布進(jìn)行研究,從而為流量計的優(yōu)化設計提供指導,無(wú)疑具有重要的意義。
過(guò)去,智能型液體渦輪流量計的研究主要集中在理論分析計算和實(shí)驗研究等?;谧饔迷跍u輪上的驅動(dòng)力矩和各種摩擦力矩之間的力矩平衡方程,學(xué)者們建立了眾多的渦輪流量計理論計算模型。其中,以Thompson和Grey提出的理論模型*具代表性。van der Kam等則利用實(shí)驗研究了脈動(dòng)流、漩渦流和速度剖面等因素對渦輪流量計特性的影響。近幾年來(lái),隨著(zhù)計算機技術(shù)和各種計算流體力學(xué)仿真軟件技術(shù)的快速發(fā)展,數值模擬方法逐漸應用于渦輪流量計的研究中。
筆者基于流體力學(xué)計算軟件Fluent建立渦輪流量計內部流場(chǎng)的數值計算模型,并利用模型對渦輪流量計前、后導流件結構對流場(chǎng)分布的影響,前導流件葉片后的尾流對葉輪進(jìn)口速度的影響以及葉輪輪轂前、后端間隙內流場(chǎng)對葉輪旋轉特性的影響等進(jìn)行分析,其目的是為渦輪流量計的結構優(yōu)化設計提供指導,減少流量計的壓力損失,提高流量計的測量精度。
1、數值模擬
1.1基本模型
文中所研究的渦輪流量計的結構如圖1所示。
為了提高數值模擬精度,盡可能保留了渦輪流量計的結構特征,例如導流件輪轂與葉輪輪轂之間的間隙。流量計外殼內徑為50mm,葉輪的主要參數如表1所示,流量計的設計流量為4~40m3/h。前導流件前端和后導流件的后端采用球形結構,前、后導流件葉片與葉輪葉片的間隙分別為12mm和7mm,導流件葉片厚度為1mm。導流件輪轂和葉輪輪轂同徑,輪轂之間的間隙為2mm。
考慮到實(shí)際工程應用中渦輪流量計通常處于紊流狀態(tài)下,故僅對這個(gè)流態(tài)下流量傳感器內部流場(chǎng)進(jìn)行了數值分析。筆者采用流體力學(xué)計算軟件Fluent6.2作為數值模擬仿真工具,計算過(guò)程中所選用的相關(guān)模型及參數如下:
1)求解器選用分離式求解器;
2)紊流流動(dòng)模型選用標準k-ε雙方程模型,結合標準壁面函數進(jìn)行數值計算,方程組中各項常數值給定為Fluent中的默認值;
3)空間方向上采用二階迎風(fēng)格式離散所有的控制方程,同時(shí)選用SIMPLE算法作為壓力-速度耦合算法;
4)時(shí)間方向上采用二階時(shí)間步進(jìn)格式來(lái)進(jìn)行時(shí)間離散。
1.2計算網(wǎng)格和邊界條件
流體經(jīng)過(guò)渦輪流量計時(shí),沖擊葉輪使葉輪旋轉,流場(chǎng)經(jīng)歷了穩定、劇烈變化再到穩定的過(guò)程。為了保證進(jìn)、出口處的流動(dòng)都是穩定的,計算區域設定為:上游3D、下游10D,原點(diǎn)為葉輪的質(zhì)心??紤]到葉輪部分的網(wǎng)格劃分疏密對計算結果的準確性具有重要的影響作用,在網(wǎng)格劃分時(shí)對葉輪表面的網(wǎng)格進(jìn)行了適當的局部加密處理。前、后直管段采用六面體網(wǎng)格,前、后導流件部分區域采用六面體網(wǎng)格,其他區域采用四面體網(wǎng)格,葉輪部分全部采用四面體網(wǎng)格,計算區域內網(wǎng)格總數為96.64萬(wàn)個(gè),其中葉輪部分的網(wǎng)格總數為45.02萬(wàn)個(gè)。
邊界條件為:進(jìn)口邊界給定一均勻流速,出口邊界給定出口靜壓,固體邊界給定無(wú)滑移邊界條件。
1.3運動(dòng)區域模型的選擇
在數值模擬中,渦輪流量計的葉輪處于旋轉狀態(tài),而前、后導流件則處于靜止狀態(tài)。因此,計算區域可分為運動(dòng)區域和靜止區域。
關(guān)于運動(dòng)區域中流動(dòng)問(wèn)題的建模,Fluent提供了多種可選模型,其中混合平面模型和滑動(dòng)網(wǎng)格模型較適用于渦輪流量傳感器內部流場(chǎng)的數值模擬?;旌掀矫婺P蛯⒏髁饔蛞暈榉€態(tài),通過(guò)混合消除了流域通道之間由于周向變化而導致的不穩定(如尾流、激波和分流),從而得到穩態(tài)解?;瑒?dòng)網(wǎng)格模型則假定流動(dòng)是不穩定的,用于轉子和定子之間有強烈的相互作用和要求對系統進(jìn)行精確的仿真的場(chǎng)合,但計算量比較大,對計算機內存的要求也比較高。筆者選用滑動(dòng)網(wǎng)格模型來(lái)模擬葉輪區域的流場(chǎng)分布,主要是為了提高渦輪流量計內部流場(chǎng)的數值模擬精度,且能分析導流件葉片和葉輪葉片處于不同的相對位置時(shí)導流件后尾流對葉輪旋轉特性的影響。
運動(dòng)區域和靜止區域的交界面則采用Fluent軟件中提供的Interface邊界條件。利用該邊界條件,在界面處流場(chǎng)數據能有效地從一個(gè)區域向另一個(gè)區域傳遞。
1.4葉輪力矩平衡的判定方法
在渦輪流量計的內部流場(chǎng)處于穩定狀態(tài)時(shí),對任一入口流速,葉輪將以某一確定的角速度ω旋轉,使作用在葉輪上的驅動(dòng)力矩和阻力矩達到平衡。計算過(guò)程中,可以通過(guò)不斷調整ω的數值,觀(guān)察葉輪旋轉是否達到力矩平衡,來(lái)確定葉輪的轉速。然而這種計算過(guò)程非常耗時(shí),在此筆者提出一種簡(jiǎn)便的確定方法。
數值計算過(guò)程中,可以通過(guò)利用Fluent軟件提供的力矩系數Cm來(lái)監測作用在葉輪上的合力矩與參考力矩的大小之比,其計算公式為
式中:Mpr和Mmin分別為壓力矩和黏性阻力矩;Aref耐為葉輪葉片弦長(cháng)與葉片高度的乘積;ρref耐為參考流體的質(zhì)量密度;Cref為參考力矩系數。
圖2即為葉輪在平衡轉速下旋轉時(shí)Cm的周期性變化過(guò)程。假定Cm為Cm值在一定計算時(shí)間內的平均值,計算時(shí)問(wèn)通常約為一個(gè)葉輪軸的旋轉周期。通過(guò)計算發(fā)現,Cm基本上與葉輪轉速呈線(xiàn)性比例關(guān)系,見(jiàn)圖3。Cm等于零所對應的ω則表示葉輪在此轉速下旋轉達到了力矩平衡。因此在實(shí)際計算中,可以選取兩個(gè)轉速進(jìn)行計算,建立Cm與ω的線(xiàn)性關(guān)系,然后利用此關(guān)系確定葉輪的平衡轉速。當然,預先能對葉輪處于平衡狀態(tài)下的轉速進(jìn)行估計,縮小設定轉速與平衡轉速的范圍,利用這種方法確定葉輪平衡轉速的精確度將更加高。
2、計算結果及分析
計算流體介質(zhì)為水,其質(zhì)量密度等于1.255kg/m3,運動(dòng)黏度為1.46×10^-5m2/s,平均流速為3m/s。計算結果表明,葉輪的平衡轉速為 1686r/min。
圖4示出了渦輪流量計沿旋轉軸方向上的速度演變過(guò)程。從圖中可以看到,當流體進(jìn)人前導流件,由于流道面積減少,流速增加。在前導流件后端,兩相鄰葉片之間流體速度分布已形成了環(huán)行通道中的速度剖面,固體壁面上存在邊界層。受葉片尾流的作用,流出導流件的流體在葉片后緣附近存在明顯的低速區。流體到達葉輪時(shí),在自然耗散的作用下流速向均勻分布發(fā)展。緊靠葉輪葉片前緣,受葉輪旋轉的影響存在一個(gè)流體速度加速區,這將導致隨后的減速區內易發(fā)生流體分離現象。后導流件的流體速度演變則存在和前導流件相同的變化過(guò)程。
前導流件葉片后形成的尾流影響進(jìn)人葉輪的速度分布,將導致葉輪葉片附近的流場(chǎng)分布很不均勻,*終影響葉輪的旋轉特性。圖5分別示出了在不同時(shí)間前導流件和葉輪之間間隙的不同橫截面上軸向流速在半徑r=0.02m周向上的分布情況。T=0時(shí),前導流件葉片正對葉輪葉片,T=0.5T1時(shí)(T1為葉輪軸的旋轉周期),前導流件葉片位于兩葉輪葉片的中間位置。從圖5中可以看到,尾流對速度剖面的影響主要體現在尾流區速度分布的變形上。T=0.5T1時(shí),緊挨葉片后緣(x=-0.0175m)正對尾流區的軸向流速僅為0.25m/s,而*高流速則為 4.5m/s??拷~輪,尾流區的流速逐漸增加,在葉輪前(x=-0.O06m)*低流速升高到了3.75m/s。從圖中同時(shí)可以看到,導流件葉片和葉輪葉片處于不同相對位置時(shí),進(jìn)入葉輪前流體速度分布情況并不一樣,主要區別在于靠近葉輪的橫截面上。T=0時(shí),受葉輪葉片的影響,x=-0.006m橫截面上的*低流速則為3.25m/s。葉輪入口速度的周期性變化也是造成合力矩系數Cm**間發(fā)生周期性變化的直接原因??梢灶A見(jiàn),前導流件葉片與葉輪葉片的距離越遠,葉輪的入口速度分布越均勻,Cm變化幅值越小,葉輪的旋轉穩定性越好。因此在設計中,在確保導流件的整流效果合理的設計結構前提下,應適當減少導流件葉片厚度以及增加導流件和葉輪之間的間距,以降低尾流對葉輪入口速度分布的影響。
如圖6所示,由于流體邊界發(fā)生突變,在前、后導流件葉片后緣都有漩渦流的形成,增加了流量計的壓力損失。因此設計導流件時(shí),應考慮葉片的前后緣進(jìn)行倒角處理。后導流件球形后端形成一個(gè)較大的回流區,同樣也會(huì )增加流量計的壓力損失。
從圖7的葉輪靜壓分布可以看到,在葉輪片的前緣形成了一個(gè)駐點(diǎn),為高壓區域。在接近葉輪輪轂表面以及葉頂處,由于存在邊界層軸向流速減少,造成駐點(diǎn)壓力減少,同時(shí)也會(huì )增加進(jìn)入葉輪流體的攻角。由于葉頂間隙的作用,葉頂處的邊界層對流體攻角的影響要比輪轂處的邊界層對流體攻角的影響要小。在葉片壓力面接近葉輪前緣處有明顯低壓區域,這種壓力的快速過(guò)渡*易造成脫流現象,不僅增加了壓力損失,也降低了葉輪旋轉的穩定性。在葉輪葉片吸力面上接近尾緣處存在一個(gè)低壓區,也易造成脫流現象。因此,應改善葉輪葉片前緣的流線(xiàn)型,使葉片前緣的高壓區平緩過(guò)渡到葉片壓力面接近前緣處的低壓區,降低渦輪流量計的壓力損失,增加葉輪旋轉的穩定性。
由圖8可以看到,葉輪輪轂前、后端面與導流件之間縫隙中的流體受葉輪旋轉的影響而具有明顯的圓周運動(dòng)。
同時(shí),葉輪前、后端縫隙中有明顯的切向速度分量,而且靠近葉輪輪轂處有漩渦流形成,見(jiàn)圖9。以上這些說(shuō)明了葉輪與前、后導流件之間縫隙內流場(chǎng)分布對葉輪的旋轉特性具有重要的影響。優(yōu)化間隙內各輪轂端面的結構,使縫隙中的流體減少產(chǎn)生漩渦流以及切向速度分量,可降低傳感器壓力損失,同時(shí)可減少葉輪輪轂端面的黏性摩擦阻力。
3、結論
本文利用所建立的數值計算模型對渦輪流量計內部的主要流場(chǎng)特征進(jìn)行了分析,得到了以下結論:
1)前導流件葉片后的尾流影響進(jìn)入葉輪入口流體速度分布,也是導致合力矩系數Cm**問(wèn)發(fā)生變化的主要原因,從而影響葉輪的旋轉特性。
2)葉輪葉片壓力面上靠近葉片前緣有一個(gè)壓力快速過(guò)渡區,*易造成脫流現象,增加了流量計的壓力損失,也降低了葉輪的旋轉穩定性;葉輪葉片吸力面上靠近葉片尾緣有一個(gè)低壓區,也易造成脫流現象。
3)葉輪輪轂前、后間隙內的流場(chǎng)受葉輪旋轉的影響而易產(chǎn)生漩渦流以及明顯的切向速度分量。
在未來(lái)工作中,仍需對渦輪流量計內的其它流動(dòng)現象進(jìn)行分析,以提高流量計的測量精度。本文已對前導流件葉片后的尾流對葉輪進(jìn)口速度的影響進(jìn)行了分析,今后將進(jìn)一步研究間隙距離不同的情況下尾流對葉輪旋轉特性的影響。